Skip to main content
Skip to main content
Science. Author manuscript; available in PMC 2019 Mar 27.
Published in final edited form as:
PMCID: PMC6436108
NIHMSID: NIHMS1019025
PMID: 30872528

The genomic history of the Iberian Peninsula over the past 8000 years

Iñigo Olalde,1,* Swapan Mallick,1,2,3 Nick Patterson,2 Nadin Rohland,1 Vanessa Villalba-Mouco,4,5 Marina Silva,6 Katharina Dulias,6 Ceiridwen J. Edwards,6 Francesca Gandini,6 Maria Pala,6 Pedro Soares,7 Manuel Ferrando-Bernal,8 Nicole Adamski,1,3 Nasreen Broomandkhoshbacht,1,3 Olivia Cheronet,9 Brendan J. Culleton,10 Daniel Fernandes,9,11 Ann Marie Lawson,1,3 Matthew Mah,1,2,3 Jonas Oppenheimer,1,3 Kristin Stewardson,1,3 Zhao Zhang,1 Juan Manuel Jiménez Arenas,12,13,14 Isidro Jorge Toro Moyano,15 Domingo C. Salazar-García,16 Pere Castanyer,17 Marta Santos,17 Joaquim Tremoleda,17 Marina Lozano,18,19 Pablo García Borja,20 Javier Fernández-Eraso,21 José Antonio Mujika-Alustiza,21 Cecilio Barroso,22 Francisco J. Bermúdez,22 Enrique Viguera Mínguez,23 Josep Burch,24 Neus Coromina,24 David Vivó,24 Artur Cebrià,25 Josep Maria Fullola,25 Oreto García-Puchol,26 Juan Ignacio Morales,25 F. Xavier Oms,25 Tona Majó,27 Josep Maria Vergès,18,19 Antònia Díaz-Carvajal,28 Imma Ollich-Castanyer,28 F. Javier López-Cachero,25 Ana Maria Silva,29,30,31 Carmen Alonso-Fernández,32 Germán Delibes de Castro,33 Javier Jiménez Echevarría,32 Adolfo Moreno-Márquez,34 Guillermo Pascual Berlanga,35 Pablo Ramos-García,36 José Ramos Muñoz,34 Eduardo Vijande Vila,34 Gustau Aguilella Arzo,37 Ángel Esparza Arroyo,38 Katina T. Lillios,39 Jennifer Mack,40 Javier Velasco-Vázquez,41 Anna Waterman,42 Luis Benítez de Lugo Enrich,43,44 María Benito Sánchez,45 Bibiana Agustí,46,47 Ferran Codina,47 Gabriel de Prado,47 Almudena Estalrrich,48 Álvaro Fernández Flores,49 Clive Finlayson,50,51,52,53 Geraldine Finlayson,50,52,53 Stewart Finlayson,50,54 Francisco Giles-Guzmán,50 Antonio Rosas,55 Virginia Barciela González,56,57 Gabriel García Atiénzar,56,57 Mauro S. Hernández Pérez,56,57 Armando Llanos,58 Yolanda Carrión Marco,59 Isabel Collado Beneyto,60 David López-Serrano,61 Mario Sanz Tormo,35 António C. Valera,62 Concepción Blasco,43 Corina Liesau,43 Patricia Ríos,43 Joan Daura,25 María Jesús de Pedro Michó,63 Agustín A. Diez-Castillo,64 Raúl Flores Fernández,35 Joan Francès Farré,65 Rafael Garrido-Pena,43 Victor S. Gonçalves,30 Elisa Guerra-Doce,33 Ana Mercedes Herrero-Corral,66 Joaquim Juan-Cabanilles,67 Daniel López-Reyes,68 Sarah B. McClure,69 Marta Merino Pérez,70 Arturo Oliver Foix,37 Montserrat Sanz Borràs,25 Ana Catarina Sousa,30 Julio Manuel Vidal Encinas,71 Douglas J. Kennett,69 Martin B. Richards,6 Kurt Werner Alt,72,73 Wolfgang Haak,4,74 Ron Pinhasi,9 Carles Lalueza-Fox,8,* and David Reich1,2,3,*

Associated Data

Supplementary Materials

Abstract

We assembled genome-wide data from 271 ancient Iberians of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high resolution time transect of the Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers prior to the spread of farming. We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE, and by ~2000 BCE the replacement of 40% of Iberia’s ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. In the Iron Age, we show that Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later impacted the rest of Iberia. Beginning at least in the Roman period, we document how the ancestry of the Peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.

The Iberian Peninsula, lying at the extreme southwestern corner of Europe, provides an excellent context in which to assess the final impact of population movements entering the continent from the east as well as interactions with North Africa. To study the genetic impact of prehistoric and historic events in Iberia, we prepared next-generation sequencing libraries treated with uracil-DNA glycosylase (UDG) (1) and enriched them for ~1.2 million single nucleotide polymorphisms (SNPs) (2, 3) to generate genome-wide data from 4 Mesolithic, 44 Neolithic, 47 Copper Age, 53 Bronze Age, 24 Iron Age, and 99 historical period Iberians (Fig. 1A-B and tables S1–2). We also generated 26 radiocarbon dates (table S3). We co-analyzed the new genomic data with previously reported data from 1107 ancient individuals, including 132 from Iberia (Fig. 1B) (2, 49), and 2862 present-day individuals (10). We filtered from the analysis datasets individuals covered by <10,000 single nucleotide polymorphisms (SNPs), evidence of contamination, or first-degree relatives of others (table S1). We analyzed the data with Principal Component Analysis (PCA) (Fig. 1C-D), f-statistics (11), and qpAdm (12), and summarize the results in Fig. 1E. We confirmed the robustness of key findings by repeating analyses after removing SNPs in CpG dinucleotides (table S5) that are susceptible to cytosine-to-thymine errors even in UDG-treated libraries (1).

An external file that holds a picture, illustration, etc.
Object name is nihms-1019025-f0001.jpg
Overview of the Ancient Iberian Genetic Time Transect.

(A) Geographic distribution and (B) dates of new and previously reported samples. Random jitter is added for sites with multiple individuals. Sites mentioned in the text are labeled. (C) Principal Component Analysis of 989 present-day west Eurasian individuals (grey dots), with ancient individuals from Iberia and other regions (pale yellow) projected onto the first two principal components. (D) Section of the PCA in (C). (E) Schematic representation of events documented in this study.

Previous knowledge of the genetic structure of Mesolithic Iberia is from 3 individuals from the northwest: LaBraña1 (2), Canes1 (5) and Chan (5). We add LaBraña2, who was a brother of the previously reported LaBraña1 (figs. S1–2 and table S6), as well as Cueva de la Carigüela (fig. S10), Cingle del Mas Nou and Cueva de la Cocina from the southeast. In northwest Iberia, we document a previously unappreciated ancestry shift before the arrival of farming (Figs. 2A, S5 and table S7). The oldest individual Chan was similar to the ~17000 BCE El Mirón, whereas the La Braña brothers from ~1300 years later were closer to central European hunter-gatherers like the Hungarian KO1, with an even more extreme shift ~700 years later in Canes1. This likely reflects gene flow impacting northwest Iberia but not the southeast, where individuals remained close to El Mirón (Fig. 2A). More data from the Mesolithic period, and especially from currently unsampled areas, would provide additional insight into the geographical impact and archaeological correlates of this ancestry shift.

An external file that holds a picture, illustration, etc.
Object name is nihms-1019025-f0002.jpg
Genome-wide admixture proportions using qpAdm.

(A) Modeling Mesolithic, Neolithic and Copper Age populations as a mixture of Anatolia_N, El Mirón and KO1. Percentages indicate proportion of El Mirón + KO1 ancestry. (B) Proportion of ancestry derived from central European Beaker/Bronze Age populations in Iberians from the Middle Neolithic to the Iron Age (table S15). Colors indicate the Y-chromosome haplogroup for each male (table S4). (C) Ancestry proportions for individuals from three sites in northeast Iberia dated between the 6th and 12th centuries CE. (D) Ancestry proportions for individuals from southeast Iberia from the 3–16th centuries CE (tables S20-S21). Each bar represents one individual with associated mtDNA (top) and Y-chromosome (bottom). In bold, haplogroups with a likely recent non-local origin.

In the Neolithic and Copper Age, we model populations as mixtures of groups related to Anatolian Neolithic, El Mirón and KO1 (Fig. 2A and table S8). We replicate previous findings of the arrival of Anatolian Neolithic-associated ancestry in multiple regions of Iberia in the Early Neolithic (7, 8, 12); however, sampling from this period remains limited and studies of larger sample sizes and additional sites will be important in order to shed additional light on the interaction between the incoming farmers and indigenous hunter-gatherers. In the Middle Neolithic and Copper Age, we reproduce previous reports of an increase of hunter-gatherer-related ancestry after 4000 BCE (6, 7, 12, 13), with higher proportions in groups from the north and center. By using as a reference frame our observations about population substructure in the Mesolithic, we show that the hunter-gatherer-related ancestry during those periods was more closely related to later northwestern (Canes1-like) than to the El Mirón-like hunter-gatherers (Fig. 2A), providing clues about the source of this ancestry.

Our Copper Age dataset includes a newly reported 2473–2030 cal BCE male (I4246) from Camino de las Yeseras (14) in central Iberia, who clusters with modern and ancient North Africans in the PCA (Fig. 1C and fig. S3), and like ~3000 BCE Moroccans (8) can be well modeled as having ancestry from both Late Pleistocene North Africans (15) and Early Neolithic Europeans (tables S9–10). His genome-wide ancestry and uniparental markers (tables S1 and S4) are unique among Copper Age Iberians, including individuals from sites with many analyzed individuals such as Sima del Ángel, and point to a North African origin. Our genetic evidence of sporadic contacts from North Africa during the Copper Age fits with the presence of African ivory at Iberian sites (16), and is confirmed by a Bronze Age individual (I7162) from Loma del Puerco in southern Iberia who had 25% ancestry related to individuals like I4246 (Fig. 1D; table S16). However, these early movements from North Africa had a limited impact on Copper and Bronze Age Iberians, as North African ancestry only became widespread in the past ~2000 years.

From the Bronze Age (~2200–900 BCE) we increase the available dataset (6, 7, 17) from 7 to 60 individuals and show how ancestry from the Pontic-Caspian steppe (“Steppe ancestry”) appeared throughout Iberia in this period (Fig. 1C-D), albeit with less impact in the south (table S13). The earliest evidence is in 14 individuals dated to ~2500–2000 BCE who co-existed with local people without Steppe ancestry (Fig. 2B). These groups lived in close proximity and admixed to form the Bronze Age population after 2000 BCE with ~40% ancestry from incoming groups (Fig. 2B and fig. S6). Y-chromosome turnover was even more dramatic (Fig. 2B), as the lineages common in Copper Age Iberia (I2, G2, H) were nearly completely replaced by one lineage, R1b-M269. These patterns point to a higher contribution of incoming males than females, also supported by a lower proportion of non-local ancestry on the X-chromosome (table S14 and fig. S7), a paradigm that can be exemplified by a Bronze Age tomb from Castillejo del Bonete containing a male with Steppe ancestry and a female with ancestry similar to Copper Age Iberians. While ancient DNA can document that sex-biased admixture occurred, archaeological and anthropological research will be needed to understand the processes that generated it.

In the Iron Age, we document a consistent trend of increased ancestry related to North/Central European populations with respect to the preceding Bronze Age (Figs. 1C-D and and2B).2B). The increase was 10–19% (95% confidence intervals given here and in what follows) in 15 individuals along the eastern Mediterranean coast where non-Indo-European Iberian languages were spoken; 11–31% in 2 individuals at the Tartessian site of La Angorrilla in the southwest with unknown language attribution; and 28–43% in 3 individuals at La Hoya in the north where Indo-European Celtiberian languages were likely spoken (fig. S6 and tables S11–12). This documents gene flow into Iberia during the Late Bronze Age or Early Iron Age, possibly associated with the introduction of the Urnfield tradition (18). Unlike central or northern Europe where Steppe ancestry likely marked the introduction of Indo-European languages (12), our results indicate that in Iberia increases in Steppe ancestry were not always accompanied by switches to Indo-European languages. This is consistent with present-day Basques who speak the only non-Indo-European language in western Europe but overlap genetically with Iron Age populations (Fig. 1D) showing substantial levels of Steppe ancestry.

In the historical period, our transect begins with 24 individuals from the Greek colony of Empúries in the northeast from 500 BCE to 600 CE (19) who fall into two ancestry groups (Fig. 1C-D and fig. S8): one similar to Bronze Age individuals from the Aegean, and the other similar to the population of Iron Age Iberia that includes the nearby non-Greek site of Ullastret, confirming historical sources indicating that this town was inhabited by a multi-ethnic population (19). The impact of mobility from the Central/Eastern Mediterranean during the Classical period is also evident in 10 individuals from the 7th-8th centuries CE site of L’Esquerda in the northeast, who show a shift from the Iron Age population in the direction of present-day Italians and Greeks (Fig. 1D), accounting for approximately one quarter of their ancestry (Fig. 2C and table S17). The same shift is also observed in present-day populations from Iberia outside the Basque area and is plausibly a consequence of the Roman presence in Iberia, which had a profound cultural impact and, according to our data, a substantial genetic impact too.

In contrast to the demographic changes in the Classical period, movements into Iberia during the decline of the Roman Empire had less long-term demographic impact. Nevertheless, individual sites bear witness to events in this period, for example at the 6th century site of Pla de l’Horta in the northeast. These individuals, archaeologically interpreted as Visigoths, are shifted from those at L’Esquerda in the direction of north/central Europe (Figs. 1D, ,2C2C and table S18), and we observe the Asian mtDNA haplogroup C4a1a also found in Early Medieval Bavaria (20), supporting a recent link with groups with ultimate ancestry from central/eastern Europe.

In the southeast, we recovered genomic data from 45 individuals dated between the 3rd-16th centuries CE. All the analyzed individuals fell outside the genetic variation of preceding Iberian Iron Age populations (Figs. 1C-D and S3) and harbored ancestry from both southern European and North African populations (Fig. 2D), as well as additional Levantine-related ancestry that could reflect Jewish contributions (21). These results demonstrate that by the Roman period, southern Iberia had experienced a major influx of North African ancestry, probably related to the well-known mobility patterns during the Roman Empire (22) or the earlier Phoenician-Punic presence (23); the latter is also supported by the observation of the Phoenician-associated Y-chromosome J2 (24). Gene flow from North Africa continued into the Muslim period, as is clear from Muslim burials with elevated North African and sub-Saharan African ancestry (Figs. 2D, S4 and table S22), and uniparental markers typical of North Africa not present among pre-Islamic individuals (Figs. 2D and S11). Present-day populations from southern Iberia harbor less North African ancestry (25) than the ancient Muslim burials, plausibly reflecting expulsion of moriscos (former Muslims converted to Christianity) and repopulation from the north, as supported by historical sources and genetic analysis of present-day groups (25). The impact of Muslim rule is also evident in northeast Iberia in seven individuals from Sant Julià de Ramis from the 8–12th centuries CE who, unlike previous ancient individuals from the same region, show North African-related ancestry (Fig. 2C and table S19) and a complete overlap in PCA with present-day Iberians (Fig. 1D).

Our time transect allowed us to track frequency changes of phenotypically important variants over the last 4,000 years (fig. S9), a period which has been minimally sampled in the ancient DNA literature not just of Iberia but of Europe more generally. Prior to this work, it was known that the lactase persistence allele at (rs4988235), which is present at moderate or high frequencies in most European populations today and is one of the strongest known signals of selection in Europeans (26), occurred at extremely low frequencies in Europe through the Bronze Age (2), raising the question of when it became common. Here we show that in Iberia the allele continued to be at low frequency in the Iron Age (fig. S9), and only approached present-day frequencies in the last 2,000 years, pointing to recent strong selection.

Beyond the specific insights about Iberia, this study serves as a model for how a high-resolution ancient DNA transect continuing into historical periods can be used to provide a detailed description of the formation of present-day populations (Fig. 1E); future application of similar strategies will provide equally valuable insights in other world regions.

Supplementary Material

Supplementary Materials

Supplementary Tables

Acknowledgements

We thank I. Mathieson, M. Lipson, I. Lazaridis, J. Sedig and K. Sirak for discussions, and M. E. Allentoft, K.-G. Sjögren, K. Kristiansen and E. Willerslev for facilitating sample collection. We thank M. Meyer for sharing the optimized oligo sequences for single-stranded library preparation. We thank the different museums for permission to study archaeological remains.

Funding: J.M.F., F.J.L-C., J.I.M., X.O., J.D. and M.S.B. were supported by HAR2017–86509-P, HAR2017–87695-P and SGR2017–11 from the Generalitat de Catalunya, AGAUR agency. C.L.-F. was supported by Obra Social La Caixa and by FEDER-MINECO (BFU2015–64699-P). C.L., P.R. and C.Bl. were supported by FEDER-MINECO (HAR2016–77600-P). D.J.K. and B.J.C. were supported by NSF BCS-1460367. K.T.L., A.W. and J.M. were supported by NSF BCS-1153568. We acknowledge support from the Portuguese foundation for science and technology (PTDC/EPH-ARQ/4164/2014) and the FEDER-COMPETE 2020 project 016899. P.S. was supported by the FCT Investigator Program (IF/01641/2013), FCT IP and ERDF (COMPETE2020 – POCI). M.S. and K.D. were supported by a Leverhulme Trust Doctoral Scholarship award. D.R. was supported by an Allen Discovery Center grant from the Paul Allen Foundation, NIH grant GM100233, and the Howard Hughes Medical Institute.

Footnotes

Competing interests: The authors declare no competing interests.

Data and materials availability: Sequencing data are available from the European Nucleotide Archive, accession PRJEB30874; genotype dataset is available as supplementary material.

References

1. Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D, Partial uracil – DNA – glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. London B 370 (2015), doi: 10.1098/rstb.2013.0624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
2. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, Harney E, Stewardson K, Fernandes D, Novak M, Sirak K, Gamba C, Jones ER, Llamas B, Dryomov S, Pickrell J, Arsuaga JL, de Castro JMB, Carbonell E, Gerritsen F, Khokhlov A, Kuznetsov P, Lozano M, Meller H, Mochalov O, Moiseyev V, Guerra MAR, Roodenberg J, Vergès JM, Krause J, Cooper A, Alt KW, Brown D, Anthony D, Lalueza-Fox C, Haak W, Pinhasi R, Reich D, Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). [PMC free article] [PubMed] [Google Scholar]
3. Fu Q, Hajdinjak M, Moldovan OT, Constantin S, Mallick S, Skoglund P, Patterson N, Rohland N, Lazaridis I, Nickel B, Viola B, Prüfer K, Meyer M, Kelso J, Reich D, Pääbo S, An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015). [PMC free article] [PubMed] [Google Scholar]
4. Fu Q, Posth C, Hajdinjak M, Petr M, Mallick S, Fernandes D, Furtwängler A, Haak W, Meyer M, Mittnik A, Nickel B, Peltzer A, Rohland N, Slon V, Talamo S, Lazaridis I, Lipson M, Mathieson I, Schiffels S, Skoglund P, Derevianko AP, Drozdov N, Slavinsky V, Tsybankov A, Cremonesi RG, Mallegni F, Gély B, Vacca E, Morales MRG, Straus LG, Neugebauer-Maresch C, Teschler-Nicola M, Constantin S, Moldovan OT, Benazzi S, Peresani M, Coppola D, Lari M, Ricci S, Ronchitelli A, Valentin F, Thevenet C, Wehrberger K, Grigorescu D, Rougier H, Crevecoeur I, Flas D, Semal P, Mannino MA, Cupillard C, Bocherens H, Conard NJ, Harvati K, Moiseyev V, Drucker DG, Svoboda J, Richards MP, Caramelli D, Pinhasi R, Kelso J, Patterson N, Krause J, Pääbo S, Reich D, The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). [PMC free article] [PubMed] [Google Scholar]
5. González-Fortes G, Jones ER, Lightfoot E, Bonsall C, Lazar C, Grandal-d’Anglade A, Garralda MD, Drak L, Siska V, Simalcsik A, Boroneanţ A, Vidal Romaní JR, Vaqueiro Rodríguez M., Arias P, Pinhasi R, Manica A, Hofreiter M, Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin. Curr. Biol 27, 1801–1810 (2017). [PMC free article] [PubMed] [Google Scholar]
6. Martiniano R, Cassidy LM, Ó’Maoldúin R, McLaughlin R, Silva NM, Manco L, Fidalgo D, Pereira T, Coelho MJ, Serra M, Burger J, Parreira R, Moran E, Valera AC, Porfirio E, Boaventura R, Silva AM, Bradley DG, The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet 13, e1006852 (2017). [PMC free article] [PubMed] [Google Scholar]
7. Valdiosera C, Günther T, Vera-Rodríguez JC, Ureña I, Iriarte E, Rodríguez-Varela R, Simões LG, Martínez-Sánchez RM, Svensson EM, Malmström H, Rodríguez L, Bermúdez de Castro J.-M., Carbonell E, Alday A, Hernández Vera JA, Götherström A, Carretero J-M, Arsuaga JL, Smith CI, Jakobsson M, Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl. Acad. Sci. U.S.A 115, 201717762 (2018). [PMC free article] [PubMed] [Google Scholar]
8. Fregel R, Mendez FL, Bokbot Y, Martin-Socas D, Camalich-Massieu MD, Santana J, Morales J, Avila-Arcos MC, Underhill PA, Shapiro B, Wojcik GL, Rasmussen M, Soares AER, Kapp J, Sockell A, Rodriguez-Santos FJ, Mikdad A, Trujillo-Mederos A, Bustamante CD, Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl. Acad. Sci. U.S.A 115, 6774–6779 (2018). [PMC free article] [PubMed] [Google Scholar]
9. Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, Rohland N, Mallick S, Szécsényi-Nagy A, Mittnik A, Altena E, Lipson M, Lazaridis I, Harper TK, Patterson N, Broomandkhoshbacht N, Diekmann Y, Faltyskova Z, Fernandes D, Ferry M, Harney E, de Knijff P, Michel M, Oppenheimer J, Stewardson K, Barclay A, Alt KW, Liesau C, Ríos P, Blasco C, Miguel JV, García RM, Fernández AA, Bánffy E, Bernabò-Brea M, Billoin D, Bonsall C, Bonsall L, Allen T, Büster L, Carver S, Navarro LC, Craig OE, Cook GT, Cunliffe B, Denaire A, Dinwiddy KE, Dodwell N, Ernée M, Evans C, Kuchařík M, Farré JF, Fowler C, Gazenbeek M, Pena RG, Haber-Uriarte M, Haduch E, Hey G, Jowett N, Knowles T, Massy K, Pfrengle S, Lefranc P, Lemercier O, Lefebvre A, Martínez CH, Olmo VG, Ramírez AB, Maurandi JL, Majó T, McKinley JI, McSweeney J, Mende BG, Mod A, Kulcsár G, Kiss V, Czene A, Patay R, Endrődi A, Köhler K, Hajdu T, Szeniczey T, Dani J, Bernert Z, Hoole M, Cheronet O, Keating D, Velemínský P, Dobeš M, Candilio F, Brown F, Fernández RF, Herrero-Corral A-M, Tusa S, Carnieri E, Lentini L, Valenti A, Zanini A, Waddington C, Delibes G, Guerra-Doce E, Neil B, Brittain M, Luke M, Mortimer R, Desideri J, Besse M, Brücken G, Furmanek M, Hałuszko A, Mackiewicz M, Rapiński A, Leach S, Soriano I, Lillios KT, Cardoso JL, Pearson MP, Włodarczak P, Price TD, Prieto P, Rey P-J, Risch R, Rojo Guerra MA, Schmitt A, Serralongue J, Silva AM, Smrčka V, Vergnaud L, Zilhão J, Caramelli D, Higham T, Thomas MG, Kennett DJ, Fokkens H, Heyd V, Sheridan A, Sjögren K-G, Stockhammer PW, Krause J, Pinhasi R, Haak W, Barnes I, Lalueza-Fox C, Reich D, The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018). [PMC free article] [PubMed] [Google Scholar]
10. Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, Sudmant PH, Schraiber JG, Castellano S, Lipson M, Berger B, Economou C, Bollongino R, Fu Q, Bos KI, Nordenfelt S, Li H, de Filippo C, Prüfer K, Sawyer S, Posth C, Haak W, Hallgren F, Fornander E, Rohland N, Delsate D, Francken M, Guinet J-M, Wahl J, Ayodo G, Babiker H, Bailliet G, Balanovska E, Balanovsky O, Barrantes R, Bedoya G, Ben-Ami H, Bene J, Berrada F, Bravi CM, Brisighelli F, Busby GBJ, Cali F, Churnosov M, Cole DEC, Corach D, Damba L, van Driem G, Dryomov S, Dugoujon J-M, Fedorova S. a., Gallego Romero I., Gubina M, Hammer M, Henn BM, Hervig T, Hodoglugil U, Jha AR, Karachanak-Yankova S, Khusainova R, Khusnutdinova E, Kittles R, Kivisild T, Klitz W, Kučinskas V, Kushniarevich A, Laredj L, Litvinov S, Loukidis T, Mahley RW, Melegh B, Metspalu E, Molina J, Mountain J, Näkkäläjärvi K, Nesheva D, Nyambo T, Osipova L, Parik J, Platonov F, Posukh O, Romano V, Rothhammer F, Rudan I, Ruizbakiev R, Sahakyan H, Sajantila A, Salas A, Starikovskaya EB, Tarekegn A, Toncheva D, Turdikulova S, Uktveryte I, Utevska O, Vasquez R, Villena M, Voevoda M, Winkler C. a., Yepiskoposyan L, Zalloua P, Zemunik T, Cooper A, Capelli C, Thomas MG, Ruiz-Linares A, Tishkoff S. a., Singh L, Thangaraj K, Villems R, Comas D, Sukernik R, Metspalu M, Meyer M, Eichler EE, Burger J, Slatkin M, Pääbo S, Kelso J, Reich D, Krause J, Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). [PMC free article] [PubMed] [Google Scholar]
11. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D, Ancient admixture in human history. Genetics 192, 1065–93 (2012). [PMC free article] [PubMed] [Google Scholar]
12. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt G, Nordenfelt S, Harney E, Stewardson K, Fu Q, Mittnik A, Bánffy E, Economou C, Francken M, Friederich S, Pena RG, Hallgren F, Khartanovich V, Khokhlov A, Kunst M, Kuznetsov P, Meller H, Mochalov O, Moiseyev U, Nicklisch N, Pichler SL, Risch R, Rojo Guerra M. a., Roth C, Szécsényi-Nagy A, Wahl J, Meyer M, Krause J, Brown D, Anthony D, Cooper A, Alt KW, Reich D, Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). [PMC free article] [PubMed] [Google Scholar]
13. Lipson M, Szécsényi-Nagy A, Mallick S, Pósa A, Stégmár B, Keerl V, Rohland N, Stewardson K, Ferry M, Michel M, Oppenheimer J, Broomandkhoshbacht N, Harney E, Nordenfelt S, Llamas B, Mende BG, Köhler K, Oross K, Bondár M, Marton T, Osztás A, Jakucs J, Paluch T, Horváth F, Csengeri P, Koós J, Sebok K, Anders A, Raczky P, Regenye J, Barna JP, Fábián S, Serlegi G, Toldi Z, Nagy EG, Dani J, Molnár E, Pálfi G, Márk L, Melegh B, Bánfai Z, Fernández-Eraso J, Mujika-Alustiza JA, Fernández CA, Echevarría JJ, Bollongino R, Orschiedt J, Schierhold K, Meller H, Cooper A, Burger J, Bánffy E, Alt KW, Lalueza-Fox C, Haak W, Reich D, Parallel ancient genomic transects reveal complex population history of early European farmers. Nature 551, 368–372 (2017). [PMC free article] [PubMed] [Google Scholar]
14. Blasco C, Liesau C, Delibes de Castro G., Baquedano E, Rodriguez M, in El campaniforme en la Península Ibérica y su contexto europeo, Rojo M, Garrido R, García I, Eds. (Universidad de Valladolid-Junta de Castilla y León, Valladolid, 2005), pp. 457–479. [Google Scholar]
15. van de Loosdrecht M, Bouzouggar A, Humphrey L, Posth C, Barton N, Aximu-Petri A, Nickel B, Nagel S, Talbi EH, El Hajraoui MA, Amzazi S, Hublin J-J, Pääbo S, Schiffels S, Meyer M, Haak W, Jeong C, Krause J, Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018). [PubMed] [Google Scholar]
16. Liesau C, Moreno E, Schuhmacher TX, Marzoli D, López Padilla JA, Eds., Marfiles campaniformes de Camino de Las Yeseras (San Fernando de Henares, Madrid). Marfil y elefantes en la Península Ibérica y el Mediterráneo Occident. Actas del Coloq. Int (2012), pp. 87–98.
17. Günther T, Valdiosera C, Malmström H, Ureña I, Rodriguez-Varela R, Sverrisdóttir ÓO, Daskalaki E. a., Skoglund P, Naidoo T, Svensson EM, Bermúdez de Castro J. M., Carbonell E, Dunn M, Storå J, Iriarte E, Arsuaga JL, Carretero J-M, Götherström A, Jakobsson M, Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl. Acad. Sci. U.S.A 112, 11917–11922 (2015). [PMC free article] [PubMed] [Google Scholar]
18. Ruiz Zapatero G., in Iberia. Protohistory of the far west of Europe: from Neolithic to Roman conquest, Almagro-Gorbea M, Ed. (Universidad de Burgos. Fundación Atapuerca, 2014), pp. 195–215. [Google Scholar]
19. Almagro-Basch M, Ampurias. Historia de la ciudad y guía de las excavaciones (Instituto Español de Prehistoria del CSIC y Servicio de Investigaciones Arqueológicas de la Diputación Provincial, Barcelona, 1951). [Google Scholar]
20. Veeramah KR, Rott A, Groß M, Van Dorp L, López S, Kirsanow K, Sell C, Blöcher J, Wegmann D, Link V, Hofmanová Z, Peters J, Trautmann B, Gairhos A, Haberstroh J, Päffgen B, Hellenthal G, Haas-Gebhard B, Harbeck M, Burger J, Population genomic analysis of elongated skulls reveals extensive female-biased immigration in early medieval Bavaria. Proc. Natl. Acad. Sci. U.S.A 155, 3494–3499 (2018). [PMC free article] [PubMed] [Google Scholar]
21. Gerber JS, The Jews of Spain: a History of the Sephardic Experience (The Free Press, New York, 1992). [Google Scholar]
22. de Ligt L, Tacoma LE, Eds., Migration and Mobility in the Early Roman Empire (Brill, Leiden, 2016). [Google Scholar]
23. Bierling MR, Gitin S, The Phoenicians in Spain An Archaeological Review of the Eighth–Sixth Centuries B.C.E (Eisenbrauns, 2002). [Google Scholar]
24. Zalloua PA, Platt DE, El Sibai M, Khalife J, Makhoul N, Haber M, Xue Y, Izaabel H, Bosch E, Adams SM, Arroyo E, López-Parra AM, Aler M, Picornell A, Ramon M, Jobling MA, Comas D, Bertranpetit J, Wells RS, Tyler-Smith C, Identifying Genetic Traces of Historical Expansions: Phoenician Footprints in the Mediterranean. Am. J. Hum. Genet 83, 633–642 (2008). [PMC free article] [PubMed] [Google Scholar]
25. Bycroft C, Fernández-Rozadilla C, Ruiz-Ponte C, Quintela-García I, Carracedo Á, Donnelly P, Myers S, Patterns of genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. bioRxiv, 250191 (2018). [PMC free article] [PubMed]
26. Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, Rhodes M, Reich DE, Hirschhorn JN, Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet 74, 1111–20 (2004). [PMC free article] [PubMed] [Google Scholar]
27. Bronk Ramsey C., OxCal 4.23 Online Manual (2013), (available at https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html).
28. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk C, Caitlin R, Hai EB, Edwards RL, Intcal13 and marine13 radiocarbon age calibration curves 0 – 50,000 years cal CP. Radiocarbon 55, 1869–1887 (2013). [Google Scholar]
29. Giles F, Finlayson JC, Rodriguez Vidal J., Santiago A, Gutiérrez López JM, Fa D, Mata E, Finlayson G, Giles Guzmán F., Referencias a las dataciones en los sistemas kársticos con ocupaciones humanas del Peñón de Gibraltar. Bol SEDECK 2 (2001), pp. 86–90. [Google Scholar]
30. Giles Guzmán FJ, Giles Pacheco F., Gutiérrez López JM, Reinoso del Río M. C., Finlayson C, Finlayson G, Rodríguez Vidal J., Finlayson S, Bray, una cueva sepulcral de la Edad del Bronce en el Peñón de Gibraltar. SAGVNTVM. Papeles del Lab. Arqueol. Val 49 (2017), p. 29. [Google Scholar]
31. Guzmán FG, López JMG, Finlayson S, Pacheco FG, Finlayson C, Finlayson G, del Río CR, Holmes TL, El uso sepulcral de las cavidades de Gibraltar durante la Prehistoria Reciente. Actas del I Congr. Int. Hist. la Serranía Ronda Las Ocup. por Soc. prehistóricas, protohistóricas y la antigüedad en la Serranía Ronda y Béticas Occident (2017), pp. 323–344. [Google Scholar]
32. Hoyos M, Lario J, Goy JL, Zazo C, Dabrio CJ, Hillaire-Marcel C, Silva PG, Somoza L, Bardají T, Sedimentación kárstica: Procesos morfosedimentarios en la zona del Estrecho de Gibraltar. Gibraltar Dur. Quat. AEQUA Monogr 2 (1994), pp. 36–48. [Google Scholar]
33. Pérez AS, Lario J, Giles Pacheco F., Finlayson C, Gutiérrez López JM, Durell R, Bramble I, Latín JP, Aguilera García J., El depósito neolítico de Rich Sand Cave (Punta Europa-Gibraltar). Almoraima (2001), pp. 31–36.
34. Hernández Pérez MS, García Atiénzar G., Barciela González V., Cabezo Redondo (Villena, Alicante) (Universidad de Alicante, 2016). [Google Scholar]
35. Romero Rameta A., in Cabezo Redondo (Villena, Alicante), Hernández Pérez MS, García Atiénzar G., Barciela González V., Eds. (Universidad de Alicante, 2016), pp. 85–87. [Google Scholar]
36. Salazar-García DC, García-Puchol O, de Miguel-Ibáñez MP, Talamo S, Earliest evidence of Neolithic collective burials from eastern Iberia: radiocarbon dating at the archaeological site of Les Llometes (Alicante, Spain). Radiocarbon 58, 679–692 (2016). [Google Scholar]
37. Pascual Pérez V., Hallazgos prehistóricos en les Llometes (Alcoy). Arch. Prehist. Levantina 10, 39–58 (1963). [Google Scholar]
38. Núñez C, Baeta M, Cardoso S, Palencia-Madrid L, García-Romero N, Llanos A, de Pancorbo MM, Mitochondrial DNA Reveals the Trace of the Ancient Settlers of a Violently Devastated Late Bronze and Iron Ages Village. PLoS One 11, e0155342 (2016). [PMC free article] [PubMed] [Google Scholar]
39. Barreiro MJS, Cronología radiométrica, ecología y clima del Paleolítico cantábrico (Ministerio de Educación, cultura y deporte, 2003), vol. 19. [Google Scholar]
40. Hernández-Pacheco E, La vida de nuestros antecesores paleolíticos según los resultados de las excavaciones en la caverna de la Paloma (Asturias). Mem. Com. Investig. Paleontológicas y Prehistóricas 31 (1923). [Google Scholar]
41. Barandiarán I, La Cueva de La Paloma (Asturias). Munibe 2, 255–283 (1971). [Google Scholar]
42. Martínez Navarrete MI, Chapa Brunet T., in La Cueva de La Paloma. Soto de Las Regueras (Asturias) (1980), pp. 115–204. [Google Scholar]
43. Hoyos M, Martínez MI, Chapa T, Castaños P, Sanchiz FB, La Cueva de La Paloma, Soto de las Regueras (Asturias). Excavaciones Arqueol. en España 116 (1980), pp. 65–100. [Google Scholar]
44. Domingo L, Pérez-Dios P, Fernández MH, Martín-Chivelet J, Ortiz JE, Torres T, Late Quaternary climatic and environmental conditions of northern Spain: An isotopic approach based on the mammalian record from La Paloma cave. Palaeogeogr. Palaeoclimatol. Palaeoecol 440, 417–430 (2015). [Google Scholar]
45. Castaños P, in La Cueva de La Paloma. Excavaciones Arqueológicas en España (1980), vol. 116, pp. 65–100. [Google Scholar]
46. Hedges REM, Housley RA, Ramsey CB, Van Klinken GJ, Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 18. Archaeometry 36, 337–374 (1994). [Google Scholar]
47. Morales JI, Cebrià A, Mestres J, Oms X, Allue E, La Cova del Guineu, 12,000 anys de presència humana a la capçelera del Foix. III Monogr. del Foix (2013), pp. 172–183.
48. Oms FX, Cebrià A, Mestres J, Morales JI, Pedro M, Vergès JM, Campaniforme i metal· lúrgia en un espai sepulcral del III mil· lenni cal. BC: la Cova de la Guineu (Font-rubí, Alt Penedès). Jornades d’Arqueologia del Penedès, 109–116 (2016).
49. Carlús X, López Cachero FJ, Oliva M, Palomo A, Rodríguez A, Terrats N, Lara C, Villena N, Cabanes, Sitges i Tombes. El paratge de Can Roqueta (Sabadell, Vallès occidental), del 1300 al 500 aC. Quad. d’Arqueologia 4 (2007). [Google Scholar]
50. Carlús X, López Cachero FJ, Terrats N, Oliva M, Palomo A, Rodríguez A, Diacronia durant la prehistòria recent a Can Roqueta (Sabadell-Barberà del Vallés, Vallés Occidental) entre el VI i el I Mil·lenni Cal ANE. Cypsela 17 (2008), pp. 115–142. [Google Scholar]
51. Palomo A, Rodríguez A, Can Roqueta II (Sabadell-Vallès Occidental): un jaciment excepcional de l’edat del bronze. Pirineus i Veïns al III mil·lenni aC, XII Col·loqui Int. d’Arqueologia Puigcerdà, Inst. d’Estudis Ceretans (2002), pp. 275–283.
52. Palomo A, Rodríguez A, Can Roqueta II (Sabadell, Vallès Occidental). Trib. d’Arqueologia (2004), pp. 77–98.
53. Daura J, Sanz M, Pike AWG, Subirà ME, Fornós JJ, Fullola JM, Julià R, Zilhão J, Stratigraphic context and direct dating of the Neandertal mandible from Cova del Gegant (Sitges, Barcelona). J. Hum. Evol 59, 109–122 (2010). [PubMed] [Google Scholar]
54. Daura J, Sanz M, Soriano I, Pedro M, Rubio Á, Oliva M, Francisco Gibaja J., Queralt I, Álvarez R, López-Cachero FJ, Objetos de oro y epicampaniforme en la Cova del Gegant. Relaciones en la costa mediterránea de la Península Ibérica durante la Edad del Bronce. Trab. Prehist 74, 149–167 (2017). [Google Scholar]
55. Ollich I, Ocaña M, Ramisa M, Rocafiguera M, A banda i banda del Ter, Història de Roda (Ajuntament de Roda de Ter / Eumo Editorial, 1995). [Google Scholar]
56. Ollich i Castanyer I., in Arqueologia funerària al nord-est peninsular (segles VI-XII), Molist N, Ripoll G, Eds. (Monografies d’Olèrdola, 3.2. Museu d’Arqueologia de Catalunya, 2012), pp. 275–286. [Google Scholar]
57. Mestres J, in Memòria de les excavacions arqueològiques a l’àrea de la muralla 2012–2013 (en preparació) (2013).
58. Szécsényi-Nagy A, Roth C, Brandt G, Rihuete-Herrada C, Tejedor-Rodríguez C, Held P, García-Martínez-De-Lagrán Í, Arcusa Magallón H, Zesch S, Knipper C, Bánffy E, Friederich S, Meller H, Bueno Ramírez P., Barroso Bermejo R., De Balbín Behrmann R, Herrero-Corral AM, Flores Fernández R., Alonso Fernández C., Jiménez Echevarria J., Rindlisbacher L, Oliart C, Fregeiro MI, Soriano I, Vicente O, Micó R, Lull V, Soler Díaz J., López Padilla JA, Roca C De Togores Muñoz, Hernández Pérez MS, Jover Maestre FJ, Lomba Maurandi J., Avilés Fernández A., Lillios KT, Silva AM, Magalhães Ramalho M., Oosterbeek LM, Cunha C, Waterman AJ, Roig Buxó J., Martínez A, Ponce Martínez J., Hunt Ortiz M., Mejías-García JC, Pecero Espín JC, Cruz-Auñón Briones R., Tomé T, Carmona Ballestero E., Cardoso JL, Araújo AC, Liesau Von Lettow-Vorbeck C., Blasco Bosqued C., Ríos Mendoza P., Pujante A, Royo-Guillén JI, Esquembre Beviá MA, Dos Santos Goncalves VM, Parreira R, Morán Hernánde z., Méndez Izquierdo E., Vega Y Miguel J., Menduiña García R., Martínez Calvo V., López Jiménez O., Krause J, Pichler SL, Garrido-Pena R, Kunst M, Risch R, Rojo-Guerra MA, Haak W, Alt KW, The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age. Sci. Rep 7, 15644 (2017). [PMC free article] [PubMed] [Google Scholar]
59. Sánchez-Polo A, Blanco-González A, Death, Relics, and the Demise of Huts: Patterns of Planned Abandonment in Middle BA Central Iberia. Eur. J. Archaeol 17, 4–26 (2014). [Google Scholar]
60. Palomino AL, Negredo MJ, Abarquero FJ, Cabañas, basureros, silos y tumbas en el yacimiento de El Cerro, La Horra (Burgos): a vueltas sobre el significado de un campo de hoyos en la Edad del Bronce de la Meseta. Numantia 7 (1999), pp. 21–41. [Google Scholar]
61. Esparza Arroyo A., Velasco Vázquez J., Delibes de Castro G., Rodríguez Marcos JA, Fernández Manzano J., Eds., Planteamiento y primeros resultados de un proyecto de investigación sobre la muerte en Cogotas I. Cogotas I una Cult. la Edad del Bronce en la Península Ibérica (2012), pp. 259–320.
62. Arteaga O, Schulz H, Roos AM, Geoarqueología Dialéctica en la Bahía de Cádiz. Geoarqueología y proceso histórico en la Bahía Cádiz. Rev. Atlántica-Mediterránea Prehist. y Arqueol. Soc 10 (2008), pp. 21–116. [Google Scholar]
63. Vijande Vila E., El poblado de Campo de Hockey (San Fernando, Cádiz): resultados preliminares y líneas de investigación futuras para el conocimiento de las formaciones sociales tribales en la Bahía de Cádiz (tránsito V-IV milenios ane). Rev. Atlántica-Mediterránea Prehist. y Arqueol. Soc 11 (2009), pp. 265–284. [Google Scholar]
64. Vijande Vila E., Domínguez-Bella S, Cantillo Duarte JJ, Martínez López J, Barrena Tocino A., Social inequalities in the Neolithic of southern Europe: The grave goods of the Campo de Hockey necropolis (San Fernando, Cádiz, Spain). Comptes Rendus Palevol 14, 147–161 (2015). [Google Scholar]
65. Benítez Mota R, Mata Almonte E., González Toraya B, Intervención arqueológica de urgencia en la Loma del Puerco (Chiclana de la Frontera, Cádiz). Anu. Arqueol. Andalucía/1992, 90–96 (1995).
66. Majó i Ortín T., Estudi dels esquelets infantils ibèrics dels Estrets-Racó de Rata (Vilafamés, Castelló). Quad. Prehistòria i Arqueol. Castelló 17 (1996), pp. 339–348. [Google Scholar]
67. Oliver A, El poblado ibérico del Puig de la Misericordia de Vinaròs. Assoc. Cult. Amics Vinaròs, Vinaròs (1994).
68. Olària C, Gusi F, López JL, Oosterbeek L, Ed., Epipaleolithic and Mesolithic Burial’s from 12,000 to 7000 BP in Levantin territory art rock. Proc. XV World Congr. Int. Union Prehist. Protohistoric Sci (2010), pp. 115–123.
69. Salazar-García DC, Aura JE, Olària CR, Talamo S, V Morales J, Richards MP, Isotope evidence for the use of marine resources in the Eastern Iberian Mesolithic. J. Archaeol. Sci 42, 231–240 (2014). [Google Scholar]
70. Benítez de Lugo Enrich L, Esteban C, Arquitecturas simbólicas orientadas astronómicamente durante el Neolítico Final, el Calcolítico y la Edad del Bronce en el sur de la Meseta. SPAL-Revista Prehist. y Arqueol, 61–87 (2018).
71. Montero Ruiz I., Benítez de Lugo Enrich L, Álvarez García HJ, Gutiérrez-Neira PC, Murillo-Barroso M, Palomares Zumajo N., Menchén Herreros G, Moraleda Sierra J., Salazar-García DC, Cobre para los muertos. Estudio arqueométrico del material metálico procedente del monumento megalítico prehistórico de Castillejo del Bonete (Terrinches, Ciudad Real). Zephyrus 73, 109 (2014). [Google Scholar]
72. Benítez de Lugo Enrich L, Mejías Moreno M, López Gutiérrez J, Álvarez García HJ, Palomares Zumajo N., Mata Trujillo E., Moraleda Sierra J., Menchén Herreros G, Fernández Martín S, Salazar García DC, Aportaciones hidrogeológicas al estudio arqueológico de los orígenes de la Edad del Bronce de La Mancha: la cueva monumentalizada de Castillejo del Bonete (Terrinches, Ciudad Real, España). Trab. Prehist 71, 76–94 (2014). [Google Scholar]
73. Benítez de Lugo Enrich L, Palomares Zumajo N., Álvarez García HJ, Barroso Bermejo R., Benito Sá nchez M., Blain H-A, Bueno Ramírez P., de Balbín Behrmann R, Fernández Martín S., López Sáez JA, Paleoecología y cultura material en el complejo tumular prehistórico del Castilejo del Bonete (Terrinches, Ciudad Real). Menga Rev. Prehist. Andalucía (2015).
74. Salazar-García DC, Benítez de Lugo Enrich L., Alvarez García HJ, Benito Sánchez M., Estudio diacrónico de la dieta de los pobladores antiguos de Terrinches (Ciudad Real) a partir del análisis de isótopos estables sobre restos óseos humanos. Rev. Española Antropol. Física 34, 6–14 (2013). [Google Scholar]
75. Delvene G, Baeza E, Benítez de Lugo Enrich L., in Yacimientos paleontológicos excepcionales en la Península Ibérica (XXXIV Jornadas de Paleontología y IV Congreso ibérico de Paleontología) (Instituto Geológico y Minero de España, Madrid, 2018), pp. 31–38. [Google Scholar]
76. Barroso Ruíz C, Botella Ortega D., Caparrós M, Moigne AM, Celiberti V, Testu A, Barsky D, Notter O, Riquelme Cantal JA, Rodríguez MP, Carretero León MI, Monge Gómez G., Khatib S, Saos T, Gregoire S, Bailón S, García Solano JA, Cabral Mesa AL, Djerrab A, George Hedley I., Abdessadok S, Batalla LLasat G., Astier N, Bertin L, Boulbes N, Cauche D, Filoux A, Hanquet C, Milizia C, Moutoussamy J, Rossoni E, Verdú Bermejo L., de Lumley H, The Cueva del Angel (Lucena, Spain): An Acheulean hunters habitat in the South of the Iberian Peninsula. Quat. Int 243, 105–126 (2011). [Google Scholar]
77. Moigne AM, Valensi P, Auguste P, García-Solano J, Tuffreau A, Lamotte A, Barroso C, Moncel MH, Bone retouchers from Lower Palaeolithic sites: Terra Amata, Orgnac 3, Cagny-l’Epinette and Cueva del Angel. Quat. Int 409, 195–212 (2016). [Google Scholar]
78. Falguères C, Ghaleb B, Tombret O, Ben Arous E, Richard M, Moigne AM, Saos T, Frouin M, Caparros M, Barroso-Ruiz C, ESR/U-series dates on Equus teeth from the Middle Pleistocene Acheulean site of Cueva del Angel, Spain. Quat. Geochronol 49, 297–302 (2019). [Google Scholar]
79. Burch J, García G, Nolla JM, Palahí L, Sagrera i Aradilla J., Sureda M, Vivó D, Miquel I, Excavacions arqueològiques a la muntanya de Sant Julià de Ramis. El castellum (Ajuntament de Sant Julià de Ramis, 2006). [Google Scholar]
80. Llinàs Pol J., Tarrés Farré A., Montalbán Martínez C., Frigola Triola J., Merino Serra J., Agustí Farjas B., Pla de l’Horta (Sarrià de Ter, Girona): una necrópolis con inhumaciones visigodas en la Tarraconense oriental. Arch. Español Arqueol 81, 289–304 (2009). [Google Scholar]
81. García-Sánchez M, Restos humanos del paleolítico medio y superior y del eneolítico de Píñar (Granada). Trab. del Inst. “Bernardino Sahagún” Antropol. y Etnogr 15 (1960), pp. 19–78. [Google Scholar]
82. Molina González F., Cámara Serrano JA, Afonso Marrero JA, Nájera Colino T., Las sepulturas del Cerro de la Virgen (Orce, Granada). Diferencias cronológicas y sociales. Rev. Atlántico-Mediterránea 16 (2014), pp. 121–142. [Google Scholar]
83. Ferrer Palma JE, Arribas A, La necrópolis megalítica del pantano de los Bermejales (Granada, 1997). [Google Scholar]
84. Álvarez García JJ, García Porras A., La zawiya del “Cobertizo Viejo” (Granada). Anu. Arqueol. Andalucía 1 (2003), pp. 429–436. [Google Scholar]
85. Bonet García MT, Intervención preventiva en la calle Panaderos no. 21–23. Albayzín, Granada. Anu. Arqueol. Andalucía 06 (2010), pp. 1715–1723. [Google Scholar]
86. Peña Rodríguez JM, López López M., Rodríguez Ariza MO, Excavación arqueológica de urgencia en Cueva Romero (Huéscar, Granada ). Anu. Arqueol. Andalucía 97 (2016), pp. 309–319. [Google Scholar]
87. Román Punzón JM, El Mundo funerario rural en la provincia de Granada durante la antigüedad tardía (Universidad de Granada, Granada, 2004). [Google Scholar]
88. Rodríguez Aguilera A., Bordes García S., Intervención arqueológica de urgencia en el yacimiento arqueológico del Maraute (Torrenueva-Motril, provincia de Granada). Anu. Arqueol. Andalucía 1999 (2002), pp. 292–303.
89. Román Punzón JM, Redescubriendo la Granada tardoantigua. Eliberri entre los siglos IV al VIII d.C. Cuad. Prehist. la Univ. Granada, 497–533 (2014).
90. Rodríguez Aguilera A., Bordes García S., Quero Endrino F., El programa de medidas correctoras de impacto arqueológico de la autovía Bailén-Motril: tramo Dúrcal-Ízbor. Bibataubín. Rev. Patrim. Cult. e Investig 2, 33–41 (2001). [Google Scholar]
91. Toro Moyano I., Ramos Linaza M., Excavación de urgencia en la necrópolis visigoda de las Delicias (Ventas de Zafarraya, Alhama de Granada) 1985. Anu. Arqueol. Andalucía/1985, 143–149 (1987).
92. Ramos Lizana M., Toro Moyano I., PÉREZTORRES C, Excavación de urgencia en la necrópolis de Las Delicias de Ventas de Zafarraya (Alhama de Granada, Granada). 2a campaña (1986). Anu. Arqueol. Andalucía/1996, 258–261 (1990).
93. Fernández Flores Á., Rodríguez Azogue A., Casado Ariza M., Prados Pérez E., La necrópolis de época tartésica de La Angorrilla. Alcalá del Río, Sevilla (Universidad de Sevilla, Sevilla, 2014). [Google Scholar]
94. Fernández-Eraso J, Mujika-Alustiza JA, Zapata-Peña L, Iriarte-Chiapusso MJ, Polo-Díaz A, Castaños P, Tarriño-Vinagre A, Cardoso S, Sesma-Sesma J, García-Gazolaz J, Beginnings, settlement and consolidation of the production economy in the Basque region. Quat. Int 364, 162–171 (2015). [Google Scholar]
95. Mujika-Alustiza JA, Edeso-Fito JM, Los primeros agricultores y ganaderos en Gipuzkoa del Neolıtico a la Edad del Hierro (Diputación de Gipuzkoa, Donostia-San Sebastián, 2011). [Google Scholar]
96. Fernández-Crespo T, Mujika JA, Ordoño J, Aproximación al patrón alimentario de los inhumados en la cista de la Edad del Bronce de Ondarre (Aralar, Guipúzcoa) a través del análisis de isótopos estables de carbono y nitrógeno sobre colágeno óseo. Trab. Prehist 73, 325–334 (2016). [Google Scholar]
97. Olalde I, Allentoft ME, Sánchez-Quinto F, Santpere G, Chiang CWK, DeGiorgio M, Prado-Martinez J, Rodríguez JA, Rasmussen S, Quilez J, Ramírez O, Marigorta UM, Fernández-Callejo M, Prada ME, Encinas JMV, Nielsen R, Netea MG, Novembre J, Sturm R, Sabeti P, Marquès-Bonet T, Navarro A, Willerslev E, Lalueza-Fox C, Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–8 (2014). [PMC free article] [PubMed] [Google Scholar]
98. Delibes de Castro G, Fernández Manzano J., Rodríguez Marcos J., Cerámica de la plenitud Cogotas I: el yacimiento de San Román de Hornija (Valladolid). Boletín del Semin. Estud. Arte y Arqueol 56, 64–105 (1990). [Google Scholar]
99. Delibes de Castro G., Una inhumación triple de facies Cogotas I en San Román de la Hornija (Valladolid). Trab. Prehist 35, 225–250 (1978). [Google Scholar]
100. Esparza Arroyo Á., Velasco Vázquez J., Delibes de Castro G., Exposition de cadáveres en el yacimiento de Tordillos (Aldeaseca de la Frontera, Salamanca). Perspectiva bioarqueológica y posibles implicaciones para el estudio del ritual funerario de Cogotas I. Zephyrus 69, 95–128 (2012). [Google Scholar]
101. Vergès i Bosch J. M., Muñoz Encimar L., Pedro M, Bargalló A, Fontanals i Torroja M., Morales JI, Ollé A, Allué E, Blain H-A, López García JM, La cova dels Galls Carboners (Mont-Ral, Alt Camp), una cavitat d’inhumació col· lectiva durant l’edat del Bronze. Butlletí Arqueol. R. Soc. Arqueol. Tarraconense (2016), pp. 17–44.
102. Canyellas J, Piñol L, Vergès JM, La vil·la d’Alcover i la necropolis de Mas Gassol. Quad. Vilaniu 29 (1996), pp. 27–41. [Google Scholar]
103. García Borja P., Pérez Fernández Á., Biosca Cirujeda V., Ribera Gomes A., Salazar García DC, in El Naiximent d’un Poble. Història i Arqueologia de la Font de la Figuera (2013), pp. 47–59.
104. García-Puchol O, McClure SB, Juan-Cabanilles J, Diez-Castillo AA, Bernabeu-Aubán J, Martí-Oliver B, Pardo-Gordó S, Pascual-Benito JL, Pérez-Ripoll M, Molina-Balaguer L, Cocina cave revisited: Bayesian radiocarbon chronology for the last hunter-gatherers and first farmers in Eastern Iberia. Quat. Int 472, 259–271 (2018). [Google Scholar]
105. Pericot L, La Cueva de la Cocina (Dos Aguas). Nota preliminar. Arch. Prehist. Levantina, Mus. Prehist (1945), pp. 39–71.
106. Fortea Pérez J., Los complejos microlaminares y geométricos del Epipaleolítico mediterráneo español (Universidad de Salamanca, Salamanca, 1973), Memorias del Seminario de Prehistoria y Arqueología. [Google Scholar]
107. Fortea J, Martí B, Fumanal P, Dupré M, Pérez Ripoll M, Epipaleolítico y neolitización en la zona oriental de la Península Ibérica. Premières communautés paysannes en Méditerranée Occident. Actes du Colloq. Int. du CNRS (Montpellier, 1983) éditions du CNRS, Paris: (1987), pp. 599–606. [Google Scholar]
108. Díez Castillo A., Cortell Nicolau A., García Puchol O., Escribá Ruiz P., Entorno 3d para el análisis y la recreación virtual de las actuaciones arqueológicas en cueva de la cocina (Dos Aguas, Valencia, España). Virtual Archaeol. Rev 8, 75–83 (2017). [Google Scholar]
109. García Puchol O., Juan Cabanilles J., McClure SB, Diez Castillo A., Pardo Gordó S., Avance de resultados de los nuevos trabajos arqueológicos en Cueva de la Cocina (Dos Aguas, Valencia): campaña de 2015. Saguntum. Papeles del Lab. Arqueol. Val 47, 251–255 (2015). [Google Scholar]
110. Pardo-gordó S, Pardo-gordó S, García O, Diez AA, Mcclure SB, Taphonomic processes inconsistent with indigenous Mesolithic acculturation during the transition to the Neolithic in the Western Mediterranean Taphonomic processes inconsistent with indigenous Mesolithic acculturation during the transition to the Neolithi. Quat. Int 483, 136–147 (2018). [Google Scholar]
111. de Pedro Michó MJ, Fortea Cervera L., Ripollés Adelantado E., Vivir junto al Turia hace 4.000 años: la Lloma de Betxí (Museu de Prehistòria de València, 2015). [Google Scholar]
112. Ribera Gomes A., Pascual Beneyto J., Barberá M, Belda JM, El poblament de l ‘Edat del Bronze a la Font de la Figuera (València). Recer. del Mus. d’Alcoi, 27–78 (2005).
113. García Borja P, Salazar García DC, Collado Beneyto I., Cortell Pérez E., Los restos humanos de la Coveta Emparetà: Contexto cronológico y cultural. Recer. del Mus. d’Alcoi 1, 31–46 (2016). [Google Scholar]
114. Pérez Jordà G., Bernabeu Aubán J., Carrión Marco Y., García Puchol O., Molina Balaguer L., Gómez Puche M., La Vital.Vida y muerte en la desembocadura del Serpis entre el III y el II Milenio cal AC. Ser. Trab. Var. del S.I.P 113 (2011). [Google Scholar]
115. Aguilella Arzo G., Agustí i Farjas B., Gómez R, Arquer Gasch N., Luján J, Un túmul funerari de l’edat del bronze al Tossal del Mortórum (Cabanes, Plana Alta, Castelló). Quad. prehistòria i Arqueol. Castelló (2009), pp. 29–39.
116. Aguilella Arzo G., Román Monroig D., García Borja P., La Cova dels Diablets (Alcalà de Xivert, Castelló). Prehistòria a la Serra d’Irta (Diputació de Castelló, 2014). [Google Scholar]
117. Gil PAA, Necrópoles de Cistas na realidade do Sudoeste Peninsular durante o II milénio aC: praticas funerárias e análise antropológica dos restos ósseos humanos exumados das Necrópoles de Casas Velhas e Monte da Cabida 3. Master’s thesis. Coimbra, Dep. Ciências da Vida, Univ. Coimbra (2014).
118. Valera AC, Recinto Calcolítico dos Perdigões: fossos e fossas do Sector I. Apontamentos Arqueol. e Património 3 (2008), p. NIA-ERA 19–27. [Google Scholar]
119. Silva A, Leandro I, Valera A, Pereira D, Afonso C, in Death as Archaeology of Transition: Thoughts and Materials Papers from the II International Conference of Transition Archaeology: Death Archaeology, Rocha L, Bueno-Ramirez P, Branco G, Eds. (2015), p. BAR –S2708 245–250.
120. Schubart H, Die Kultur der Bronzezeit im Südwesten der Iberischen Halbinsel. Madrider Forschungen, 9 1 (1975). [Google Scholar]
121. Tavares da Silva C., Soares J, Pré-História da área de Sines. Gab. da Área Sines, Lisboa (1981).
122. Silva AM, Gil P, Soares J, da Silva CT, Evidence of non-masticatory dental use in Bronze Age individuals exhumed from the Necropolis of Casas Velhas (Portugal). Bull. Int. Assoc. Paleodont 10 (2016), pp. 31–38. [Google Scholar]
123. Silva AM, Gil P, Soares J, da Silva CT, Evidence of Trepanation on a Female Individual from the Middle Bronze Age Necropolis of Casas Velhas (Melides, Portugal). Int. J. Osteoarchaeol 27 (2017), pp. 515–521. [Google Scholar]
124. Soares J, Tavares da Silva C, in Existe uma Idade do Bronze Atlântico? (Trabalhos de Arqueologia, 10) (Instituto Português de Arqueologia, 1998), pp. 231–245. [Google Scholar]
125. Tavares da Silva C., Soares J, Práticas funerárias no Bronze Pleno do litoral alentejano: o Monumento II do Pessegueiro. Estud. Arqueol. Oeiras 17, 389–420 (2009). [Google Scholar]
126. Gallay G, Spindler K, Trindade L, Veiga Ferreira O., O monumento pré-histórico de Pai Mogo (Lourinhã). Lisboa, Assoc. Arqueólogos Port (1973).
127. Spindler K, Gallay G, Kupferzeitliche Siedlung und Begräbnisstätten von Matacães in Portugal. Mainz am Rhein, Verlag Philipp von Zabern 1 (1973). [Google Scholar]
128. Silva A, Antropologia funerária e Paleobiologia das populações portuguesas (litorais) do Neolítico final/Calcolítico. PhD Diss. Anthropol. Dep. Anthropol. Fac. Sci. Technol. Univ. Coimbra (2002).
129. Silva AM, Portuguese Populations of the Late Neolithic and Chalcolithic Periods exhumed from Collective burials: an overview. Anthropologie XLI/1–2, 55–64 (2003). [Google Scholar]
130. Guiry EJ, Hillier M, Boaventura R, Silva AM, Oosterbeek L, Tomé T, Valera A, Cardoso JL, Hepburn JC, Richards MP, The transition to agriculture in south-western Europe: new isotopic insights from Portugal’s Atlantic coast. Antiquity 90, 604–616 (2016). [Google Scholar]
131. Waterman A, Tykot R, Silva AM, Stable Isotope Analysis of diet-based social differentiation at Late Prehistoric Collective burials in southwestwern Portugal. Archaeometry 58, 131–151 (2016). [Google Scholar]
132. Silva AM, in Antropología y biodiversidad actas do XII congreso de la sociedad española de antropología biológica. Bellaterra ed, Barcelona; (2003), pp. 506–512. [Google Scholar]
133. Longin R, New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971). [PubMed] [Google Scholar]
134. Lohse JC, Madsen DB, Culleton BJ, Kennett DJ, Isotope paleoecology of episodic mid-to-late Holocene bison population expansions in the Southern Plains, U.S.A. Quat. Sci. Rev 102, 14–26 (2014). [Google Scholar]
135. Van Klinken GJ, Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci 26, 687–695 (1999). [Google Scholar]
136. Vogel JC, Fuls A, Visser E, Becker B, Radiocarbon Fluctuations During the Third Millennium BC. Radiocarbon 28, 935–938 (1986). [Google Scholar]
137. Santos GM, Southon JR, Druffel-Rodriguez KC, Griffin S, Mazon M, Magnesium Perchlorate as an Alternative Water Trap in AMS Graphite Sample Preparation: A Report On Sample Preparation at Kccams at the University of California, Irvine. Radiocarbon 46, 165–173 (2004). [Google Scholar]
138. Stuiver M, Polach HA, Reporting of 14C Data. Radiocarbon 19, 355–363 (1977). [Google Scholar]
139. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera C, García N, Pääbo S, Arsuaga J-L, Meyer M, Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U.S.A 110, 15758–63 (2013). [PMC free article] [PubMed] [Google Scholar]
140. Rohland N, Glocke I, Aximu-Petri A, Meyer M, Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc 13, 2447–2461 (2018). [PubMed] [Google Scholar]
141. Korlević P, Gerber T, Gansauge MT, Hajdinjak M, Nagel S, Aximu-Petri A, Meyer M, Reducing microbial and human contamination in dna extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015). [PubMed] [Google Scholar]
142. Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S, Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res 38, e87 (2010). [PMC free article] [PubMed] [Google Scholar]
143. Gansauge MT, Gerber T, Glocke I, Korlević P, Lippik L, Nagel S, Riehl LM, Schmidt A, Meyer M, Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res 45, e79 (2017). [PMC free article] [PubMed] [Google Scholar]
144. Gansauge M-T, Meyer M, Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc 8, 737–48 (2013). [PubMed] [Google Scholar]
145. Kircher M, Sawyer S, Meyer M, Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40, 1–8 (2012). [PMC free article] [PubMed] [Google Scholar]
146. Yang DY, Waye JS, Dudar JC, Saunders SR, Technical note : improved DNA extraction from ancient bone using silica-based spin columns. Am J Phys Anthr 105, 539–543 (1998). [PubMed] [Google Scholar]
147. MacHugh DE, Edwards CJ, Bailey JF, Bancroft DR, Bradley DG, The Extraction and Analysis of Ancient DNA From Bone and Teeth: a Survey of Current Methodologies. Anc. Biomol 3, 81 (2000). [Google Scholar]
148. Behar DM, van Oven M, Rosset S, Metspalu M, Loogväli E-L, Silva NM, Kivisild T, Torroni A, Villems R, A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet 90, 675–84 (2012). [PMC free article] [PubMed] [Google Scholar]
149. Li H, Durbin R, Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). [PMC free article] [PubMed] [Google Scholar]
150. Daley T, Smith AD, Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–7 (2013). [PMC free article] [PubMed] [Google Scholar]
151. Fu Q, Mittnik A, Johnson PLF, Bos K, Lari M, Bollongino R, Sun C, Giemsch L, Schmitz R, Burger J, Ronchitelli AM, Martini F, Cremonesi RG, Svoboda J, Bauer P, Caramelli D, Castellano S, Reich D, Pääbo S, Krause J, A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol 23, 553–9 (2013). [PMC free article] [PubMed] [Google Scholar]
152. Korneliussen TS, Albrechtsen A, Nielsen R, ANGSD : Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15, 1–13 (2014). [PMC free article] [PubMed] [Google Scholar]
153. Weissensteiner H, Pacher D, Kloss-Brandstätter A, Forer L, Specht G, Bandelt H-J, Kronenberg F, Salas A, Schönherr S, HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44, W58–63 (2016). [PMC free article] [PubMed] [Google Scholar]
154. Solé-Morata N, Villaescusa P, García-Fernández C, Font-Porterias N, Illescas MJ, Valverde L, Tassi F, Ghirotto S, Férec C, Rouault K, Jiménez-Moreno S, Martínez-Jarreta B, Pinheiro MF, Zarrabeitia MT, Carracedo Á, De Pancorbo MM, Calafell F, Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci. Rep 7, 1–13 (2017). [PMC free article] [PubMed] [Google Scholar]
155. Valverde L, Illescas MJ, Villaescusa P, Gotor AM, García A, Cardoso S, Algorta J, Catarino S, Rouault K, Férec C, Hardiman O, Zarrabeitia M, Jiménez S, Pinheiro MF, Jarreta BM, Olofsson J, Morling N, de Pancorbo MM, New clues to the evolutionary history of the main European paternal lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia. Eur. J. Hum. Genet 24, 437–441 (2016). [PMC free article] [PubMed] [Google Scholar]
156. Kennett DJ, Plog S, George RJ, Culleton BJ, Watson AS, Skoglund P, Rohland N, Mallick S, Stewardson K, Kistler L, LeBlanc SA, Whiteley PM, Reich D, Perry GH, Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun 8, 14115 (2017). [PMC free article] [PubMed] [Google Scholar]
157. Monroy Kuhn J. M., Jakobsson M, Günther T, Estimating genetic kin relationships in prehistoric populations. PLoS One 13, 1–21 (2018). [PMC free article] [PubMed] [Google Scholar]
158. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, Fernandes D, Novak M, Gamarra B, Sirak K, Connell S, Stewardson K, Harney E, Fu Q, Gonzalez-Fortes G, Jones ER, Roodenberg SA, Lengyel G, Bocquentin F, Gasparian B, Monge JM, Gregg M, Eshed V, Mizrahi A-S, Meiklejohn C, Gerritsen F, Bejenaru L, Blüher M, Campbell A, Cavalleri G, Comas D, Froguel P, Gilbert E, Kerr SM, Kovacs P, Krause J, McGettigan D, Merrigan M, Merriwether DA, O’Reilly S, Richards MB, Semino O, Shamoon-Pour M, Stefanescu G, Stumvoll M, Tönjes A, Torroni A, Wilson JF, Yengo L, Hovhannisyan NA, Patterson N, Pinhasi R, Reich D, Genomic insights into the origin of farming in the ancient Near East. Nature 536, 1–22 (2016). [PMC free article] [PubMed] [Google Scholar]
159. Broushaki F, Thomas MG, Link V, López S, Van Dorp L, Kirsanow K, Diekmann Y, Cassidy LM, Díez-del-molino D, Kousathanas A, Sell C, Robson HK, Martiniano R, Blöcher J, Scheu A, Kreutzer S, Bobo D, Davudi H, Munoz O, Currat M, Abdi K, Wegmann D, Hellenthal G, Burger J, Early Neolithic genomes from the eastern Fertile Crescent. Science 7943, 1–16 (2016). [PMC free article] [PubMed] [Google Scholar]
160. Cassidy LM, Martiniano R, Murphy EM, Teasdale MD, Mallory J, Hartwell B, Bradley DG, Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl. Acad. Sci. U.S.A 113, 1–6 (2016). [PMC free article] [PubMed] [Google Scholar]
161. Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM, Bondarev A. a., Johnson PLF, Aximu-Petri A, Prüfer K, de Filippo C, Meyer M, Zwyns N, Salazar-García DC, Kuzmin YV, Keates SG, Kosintsev P. a., Razhev DI, Richards MP, Peristov NV, Lachmann M, Douka K, Higham TFG, Slatkin M, Hublin J-J, Reich D, Kelso J, Viola TB, Pääbo S, Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014). [PMC free article] [PubMed] [Google Scholar]
162. Haber M, Doumet-Serhal C, Scheib C, Xue Y, Danecek P, Mezzavilla M, Youhanna S, Martiniano R, Prado-Martinez J, Szpak M, Matisoo-Smith E, Schutkowski H, Mikulski R, Zalloua P, Kivisild T, Tyler-Smith C, Continuity and admixture in the last five millennia of Levantine history from ancient Canaanite and present-day Lebanese genome sequences. Am. J. Hum. Genet 101, 1–9 (2017). [PMC free article] [PubMed] [Google Scholar]
163. Hofmanová Z, Kreutzer S, Hellenthal G, Sell C, Diekmann Y, Díez-del-Molino D, van Dorp L, López S, Kousathanas A, Link V, Kirsanow K, Cassidy LM, Martiniano R, Strobel M, Scheu A, Kotsakis K, Halstead P, Triantaphyllou S, Kyparissi-Apostolika N, Urem-Kotsou D, Ziota C, Adaktylou F, Gopalan S, Bobo DM, Winkelbach L, Blöcher J, Unterländer M, Leuenberger C, Çilingiroglu Ç, Horejs B, Gerritsen F, Shennan SJ, Bradley DG, Currat M, Veeramah KR, Wegmann D, Thomas MG, Papageorgopoulou C, Burger J, Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. U.S.A 113, 6886–6891 (2016). [PMC free article] [PubMed] [Google Scholar]
164. Jones ER, Gonzalez-Fortes G, Connell S, Siska V, Eriksson A, Martiniano R, Mc Laughlin RL, Llorente MG, Cassidy LM, Gamba C, Meshveliani T, Bar-Yosef O, Muller W, Belfer-Cohen A, Matskevich Z, Jakeli N, Higham TFG, Currat M, Lordkipanidze D, Hofreiter M, Manica A, Pinhasi R, Bradley DG, Upper palaeolithic genomes reveal deep roots of modern eurasians. Nat. Comm 6, 1–8 (2015). [PMC free article] [PubMed] [Google Scholar]
165. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, a Underhill P, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O’Connor BD, Carlson MRJ, Meder B, Blin N, Meese E, Pusch CM, Zink A, New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat. Commun 3, 698 (2012). [PubMed] [Google Scholar]
166. Kilinc GM, Omrak A, Özer F, Stora J, Günther T, Büyükkarakaya AM, Biçakçi E, Baird D, Dönertas HM, Ghalichi A, Yaka R, Koptekin D, Jakobsson M, Götherstrom A, The Demographic Development of the First Farmers in Anatolia. Curr. Biol 26, 1–8 (2016). [PMC free article] [PubMed] [Google Scholar]
167. Lazaridis I, Mittnik A, Patterson N, Mallick S, Rohland N, Pfrengle S, Furtwängler A, Peltzer A, Posth C, Vasilakis A, McGeorge PJP, Konsolaki-Yannopoulou E, Korres G, Martlew H, Michalodimitrakis M, Özsait M, Özsait N, Papathanasiou A, Richards M, Roodenberg SA, Tzedakis Y, Arnott R, Fernandes DM, Hughey JR, Lotakis DM, Navas PA, Maniatis Y, Stamatoyannopoulos JA, Stewardson K, Stockhammer P, Pinhasi R, Reich D, Krause J, Stamatoyannopoulos G, Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017). [PMC free article] [PubMed] [Google Scholar]
168. Gallego Llorente M., Jones ER, Eriksson A, Siska V, Arthur KW, Arthur JW, Curtis MC, Stock JT, Coltorti M, Pieruccini P, Stretton S, Brock F, Higham T, Park Y, Hofreiter M, Bradley DG, Bhak J, Pinhasi R, Manica A, Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015). [PubMed] [Google Scholar]
169. Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, Olalde I, Broomandkhoshbacht N, Candilio F, Cheronet O, Fernandes D, Ferry M, Gamarra B, Fortes GG, Haak W, Harney E, Jones E, Keating D, Krause-Kyora B, Kucukkalipci I, Michel M, Mittnik A, Nägele K, Novak M, Oppenheimer J, Patterson N, Pfrengle S, Sirak K, Stewardson K, Vai S, Alexandrov S, Alt KW, Andreescu R, Antonovic D, Ash A, Atanassova N, Bacvarov K, Gusztáv MB, Bocherens H, Bolus M, Boroneant A, Boyadzhiev Y, Budnik A, Burmaz J, Chohadzhiev S, Conard NJ, Cottiaux R, Čuka M, Cupillard C, Drucker DG, Elenski N, Francken M, Galabova B, Ganetsovski G, Gély B, Hajdu T, Handzhyiska V, Harvati K, Higham T, Iliev S, Jankovic I, Karavanic I, Kennett DJ, Komšo D, Kozak A, Labuda D, Lari M, Lazar C, Leppek M, Leshtakov K, Lo Vetro D, Los D, Lozanov I, Malina M, Martini F, McSweeney K, Meller H, Menđušić M, Mirea P, Moiseyev V, Petrova V, Price TD, Simalcsik A, Sineo L, Šlaus M, Slavchev V, Stanev P, Starovic A, Szeniczey T, Talamo S, Teschler-Nicola M, Thevenet C, Valchev I, Valentin F, Vasilyev S, Veljanovska F, Venelinova S, Veselovskaya E, Viola B, Virag C, Zaninovic J, Zäuner S, Stockhammer PW, Catalano G, Krauß R, Caramelli D, Zariņa G, Gaydarska B, Lillie M, Nikitin AG, Potekhina I, Papathanasiou A, Borić D, Bonsall C, Krause J, Pinhasi R, Reich D, The genomic history of southeastern Europe. Nature 555, 197–203 (2018). [PMC free article] [PubMed] [Google Scholar]
170. Olalde I, Schroeder H, Sandoval-Velasco M, Vinner L, Lobón I, Ramirez O, Civit S, García Borja P, Salazar-García DC, Talamo S, María Fullola J, Xavier Oms F., Pedro M, Martínez P, Sanz M, Daura J, Zilhão J, Marquès-Bonet T, Gilbert MTP, Lalueza-Fox C, A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures. Mol. Biol. Evol 32, 3132–3142 (2015). [PMC free article] [PubMed] [Google Scholar]
171. Omrak A, Günther T, Valdiosera C, Svensson EM, Malmström H, Kiesewetter H, Aylward W, Storå J, Jakobsson M, Götherström A, Genomic Evidence Establishes Anatolia as the Source of the European Neolithic Gene Pool. Curr. Biol 26, 270–275 (2016). [PubMed] [Google Scholar]
172. Skoglund P, Thompson JC, Prendergast ME, Mittnik A, Sirak K, Hajdinjak M, Salie T, Rohland N, Mallick S, Peltzer A, Heinze A, Olalde I, Ferry M, Harney E, Michel M, Stewardson K, Cerezo-Román JI, Chiumia C, Crowther A, Gomani-Chindebvu E, Gidna AO, Grillo KM, Helenius IT, Hellenthal G, Helm R, Horton M, López S, Mabulla AZP, Parkington J, Shipton C, Thomas MG, Tibesasa R, Welling M, Hayes VM, Kennett DJ, Ramesar R, Meyer M, Pääbo S, Patterson N, Morris AG, Boivin N, Pinhasi R, Krause J, Reich D, Reconstructing Prehistoric African Population Structure. Cell 171, 59–71.e21 (2017). [PMC free article] [PubMed] [Google Scholar]
173. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, Rasmussen S, Stafford TW, Orlando L, Metspalu E, Karmin M, Tambets K, Rootsi S, Mägi R, Campos PF, Balanovska E, Balanovsky O, Khusnutdinova E, Litvinov S, Osipova LP, a Fedorova S, Voevoda MI, DeGiorgio M, Sicheritz-Ponten T, Brunak S, Demeshchenko S, Kivisild T, Villems R, Nielsen R, Jakobsson M, Willerslev E, Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014). [PMC free article] [PubMed] [Google Scholar]
174. Schiffels S, Haak W, Paajanen P, Llamas B, Popescu E, Lou L, Clarke R, Lyons A, Mortimer R, Sayer D, Tyler-Smith C, Cooper A, Durbin R, Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat. Commun 7, 10408 (2016). [PMC free article] [PubMed] [Google Scholar]
175. Sikora M, Seguin-orlando A, Sousa VC, Albrechtsen A, Ko A, Rasmussen S, Dupanloup I, Nigst PR, Marjolein D, Renaud G, Allentoft ME, Margaryan A, V Vasilyev S, Elizaveta V, Borutskaya SB, Deviese T, Comeskey D, Higham T, Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers 1807, 1–15 (2017). [PubMed] [Google Scholar]
176. Skoglund P, Malmström H, Omrak A, Raghavan M, Valdiosera C, Günther T, Hall P, Tambets K, Parik J, Karl-Göran S, Apel J, Willerslev E, Storå J, Götherström A, Jakobsson M, Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers. Science 201, 786–792 (2014). [PubMed] [Google Scholar]
177. Yang MA, Gao X, Theunert C, Tong H, Aximu-Petri A, Nickel B, Slatkin M, Meyer M, Pääbo S, Kelso J, Fu Q, 40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Curr. Biol 27, 3202–3208 (2017). [PMC free article] [PubMed] [Google Scholar]
178. Schuenemann VJ, Peltzer A, Welte B, van Pelt WP, Molak M, Wang C-C, Furtwängler A, Urban C, Reiter E, Nieselt K, Teßmann B, Francken M, Harvati K, Haak W, Schiffels S, Krause J, Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat. Commun 8 (2017), doi: 10.1038/ncomms15694. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
179. Rodríguez-Varela R, Günther T, Krzewinska M, Stora J, Gillingwater TH, MacCallum M, Arsuaga JL, Dobney K, Valdiosera C, Jakobsson M, Götherström A, Girdland-flink L, Genomic analyses of Pre-European conquest human remains from the Canary Islands reveal close affinity to modern North Africans. Curr. Biol 27, 3396–3402 (2017). [PubMed] [Google Scholar]
180. van den Brink ECM, Beeri R, Kirzner D, Bron E, Cohen-Weinberger A, Kamaisky E, Gonen T, Gershuny L, Nagar Y, Ben-Tor D, Sukenik N, Shamir O, Maher EF, Reich D, A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levant 49, 105–135 (2017). [Google Scholar]
181. Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlström T, Vinner L, Malaspinas A-S, Margaryan A, Higham T, Chivall D, Lynnerup N, Harvig L, Baron J, Della Casa P, Dąbrowski P, Duffy PR, Ebel AV, Epimakhov A, Frei K, Furmanek M, Gralak T, Gromov A, Gronkiewicz S, Grupe G, Hajdu T, Jarysz R, Khartanovich V, Khokhlov A, Kiss V, Kolář J, Kriiska A, Lasak I, Longhi C, McGlynn G, Merkevicius A, Merkyte I, Metspalu M, Mkrtchyan R, Moiseyev V, Paja L, Pálfi G, Pokutta D, Pospieszny Ł, Price TD, Saag L, Sablin M, Shishlina N, Smrčka V, Soenov VI, Szeverényi V, Tóth G, Trifanova SV, Varul L, Vicze M, Yepiskoposyan L, Zhitenev V, Orlando L, Sicheritz-Pontén T, Brunak S, Nielsen R, Kristiansen K, Willerslev E, Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). [PubMed] [Google Scholar]
182. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu Q, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue Y, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JTS, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh† L, Thangaraj K, Pääbo S, Kelso J, Patterson N, Reich D, The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016). [PMC free article] [PubMed] [Google Scholar]
183. Auton A et al., A global reference for human genetic variation. Nature 526, 68–74 (2015). [PMC free article] [PubMed] [Google Scholar]
184. Patterson N, Price AL, Reich D, Population structure and eigenanalysis. PLoS Genet 2, e190 (2006). [PMC free article] [PubMed] [Google Scholar]
185. Busing FMTA, Meijer E, Van Der Leeden R, Delete- m Jackknife for Unequal m. Stat. Comput 9, 3–8 (1999). [Google Scholar]
186. Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G, Mattiangeli V, Domboróczki L, Kővári I, Pap I, Anders A, Whittle A, Dani J, Raczky P, Higham TFG, Hofreiter M, Bradley DG, Pinhasi R, Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun 5, 5257 (2014). [PMC free article] [PubMed] [Google Scholar]
187. Olivieri A, Achilli A, Pala M, Battaglia V, Fornarino S, Al-zahery N, Scozzari R, Cruciani F, Behar DM, Dugoujon J, Coudray C, Santachiara-benerecetti AS, Semino O, Bandelt H, Battag V, The mtDNA Early Upper Legacy Palaeolithic of the Levantine in Africa. Science 314, 1767–1770 (2006). [PubMed] [Google Scholar]
188. Trombetta B, D’Atanasio E, Massaia A, Ippoliti M, Coppa A, Candilio F, Coia V, Russo G, Dugoujon JM, Moral P, Akar N, Sellitto D, Valesini G, Novelletto A, Scozzari R, Cruciani F, Phylogeographic refinement and large scale genotyping of human Y chromosome haplogroup E provide new insights into the dispersal of early Pastoralists in the African continent. Genome Biol. Evol 7, 1940–1950 (2015). [PMC free article] [PubMed] [Google Scholar]
189. Posth C, Renaud G, Mittnik A, Drucker DG, Rougier H, Cupillard C, Valentin F, Thevenet C, Furtwängler A, Wißing C, Francken M, Malina M, Bolus M, Lari M, Gigli E, Capecchi G, Crevecoeur I, Beauval C, Flas D, Germonpré M, Van Der Plicht J, Cottiaux R, Gély B, Ronchitelli A, Wehrberger K, Grigorescu D, Svoboda J, Semal P, Caramelli D, Bocherens H, Harvati K, Conard NJ, Haak W, Powell A, Krause J, Pleistocene mitochondrial genomes suggest a single major dispersal of non-africans and a late glacial population turnover in Europe. Curr. Biol 26, 827–833 (2016). [PubMed] [Google Scholar]